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a b s t r a c t

Underdetermined direction-of-arrival (DOA) estimation for quasi-stationary signals imping-
ing on a uniform circular array (UCA) with M sensors is addressed in this paper. We apply
the Khatri–Rao (KR) approach to the UCA and obtain a new signal model which is
capable of providing OðM2Þ sensors. Meanwhile, the virtual steering matrix can be decom-
posed into a product of characteristic matrix depending on the array structure and a
Vandermonde matrix bearing the DOA information. The exact number of virtual sensors
that the KR-UCA model is able to provide is studied as well. Simulation results are
included to demonstrate the effectiveness of the proposed method.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Quasi-stationary signals (QSS) represent an important
class of signals that we frequently encounter in many
applications such as microphone array speech processing
[1] and electroencephalogram [2]. The QSS has the
statistical property that it remains stationary over a
short period of time but varies from one time frame
to others. This quasi-stationary statistical property in
time domain enables us to perform underdetermined
direction-of-arrival (DOA) estimation in space domain.
upported by a grant
red by the Research
ral Science Founda-
29/61161160564), by
der Grants 61222106
rogram under Grant

ao),
ail.com (C. Qian),
hk (H.C. So).
Many methods have been developed to deal with the
DOA estimation in the underdetermined condition, such
as higher-order cumulants [3] and nested array [4]. Mean-
while, a Khatri–Rao (KR) subspace approach has also
been proposed in [5] to tackle the underdetermined DOA
estimation of QSSs.

Uniform circular array (UCA) [6] is of interest in many
applications, including radar, sonar and navigation, due to
its desirable properties. That is, it is capable of providing
3601 azimuthal coverage and offers the same aperture for
any direction. Basically, there are two main approaches to
solve the DOA estimation problem for UCA. The first one is
to use the property of Bessel function to fulfil a beamspace
transformation [7,8]. The second one is to adopt the
concept of virtual array which is developed using the
interpolated array (IA) technique [9]. Conventionally, an
M-element UCA can resolve up to ðM�1Þ sources. In order
to resolve more than (M�1) sources, we might employ
the KR subspace approach with UCA to handle the issue
of underdetermined DOA estimation and we call this
scheme KR-UCA. However, the beamspace transformation
technique cannot be applied to the KR-UCA because the
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array structure of KR-UCA is different from UCA, and
the IA technique introduces mapping errors which in
turn considerably degrade the DOA estimation accuracy.
Conventional DOA estimation technique, e.g., fourth-order
cumulant MUltiple SIgnal Classification (4-MUSIC) [10,11],
has a high complexity burden. In this paper, we exploit the
manifold separation technique (MST) [12] for KR-UCA DOA
estimation. The steering matrix of KR-UCA can be decom-
posed into the product of a characteristic matrix describ-
ing the UCA and a Vandermonde structure containing
the DOA information. We then apply the Capon [13] and
MUSIC [14] methods to the KR-UCA DOA estimation
problem in both narrowband and wideband conditions.
Low-complexity methods, e.g., root-MUSIC [15], could also
be applied to the KR-UCA. The number of virtual sensors
that our proposed method can provide is up to OðM2Þ. As a
result, it can perform underdetermined DOA estimation.
In this paper, the UCA sensors have omnidirectional
radiation patterns and no mutual coupling effect. Note
that a number of methods which can deal with mutual
coupling effect for UCA have been proposed in [8,16,17].
It is assumed that each source is located at a fixed and
known elevation angle. Hence, we only address 1-D DOA
estimation.

This paper is organized as follows. In Section 2, we
present the signal model. In Section 3, we review the KR
subspace approach and then derive two KR-UCA based
DOA estimators using the Capon and MUSIC methods.
In Section 4, we include simulation results to illustrate
the performance of the algorithms in both narrowband
and wideband scenarios. Finally, conclusions are drawn in
Section 5.
2. Signal model

Consider a UCA with M uncoupled and omnidirectional
sensors. There are P uncorrelated signals impinging on the
UCA. The observation vector is

xðtÞ ¼AsðtÞþnðtÞ; t ¼ 1;…;N: ð1Þ

Here, nðtÞACM is assumed a zero-mean white Gaussian
vector with covariance σ2

nIM where IM is the M �M
identity matrix, A¼ ½aðϕ1Þ; aðϕ2Þ;…; aðϕPÞ�ACM�P is the
steering matrix of UCA and aðϕpÞ is the M � 1 steering
vector:

aðϕpÞ ¼ ½ejζ cos ðϕp � γ1Þ; ejζ cos ðϕp � γ2Þ;…; ejζ cos ðϕp �γM Þ�T ð2Þ

for p¼ 1;2;…; P. Here, the superscript ð�ÞT stands for trans-
pose, j¼

ffiffiffiffiffiffiffiffi
�1

p
, γm ¼ 2πm=M, m¼ 1;2;…;M, ζ ¼ κr sin ðθÞ,

r is the radius of the UCA, κ ¼ 2πλ with λ being the wave
length, and ϕpAð�π;π� is the azimuth angle. In this paper,
we assume that co-elevation angle θ is fixed at 901 [9,12].
As a result, ζ ¼ 2πr=λ is a constant for fixed elevation angle
in the narrowband condition. Moreover, the source num-
ber P is a priori known or accurately estimated [18–20].

Each source signal sp(t) is modeled as a quasi-stationary
process with K non-overlapped frames and the length of
each frame is L. Within the kth frame, the QSS is stationary,
meaning that

EfjspðtÞj2g ¼ σ2
pk; 8tA ½ðk�1ÞL; kL�1�; k¼ 1;2;…;K ð3Þ

where Ef�g denotes the expectation operator and signal
power σ2pk varies along with p and k. The corresponding
exact local covariance in the kth frame can be written as

Rk ¼ EfxkðtÞxH
k ðtÞg ¼ADkA

Hþσ2
nIM ð4Þ

where Dk ¼ diagðσ2
1k;σ

2
2k;…;σ2

PkÞ, xkðtÞ contains the sam-
ples within the kth frame and the superscript ð�ÞH stands
for conjugate transpose.
3. Khatri–Rao subspace approach

In this section, we apply the KR subspace approach to
DOA estimation with UCA and derive a new array model of
KR-UCA. To begin with, we briefly introduce the property
of KR product. We use vecð�Þ to represent vectorization,
� to denote the KR product, � to denote the Kronecker
product and the superscript n to denote conjugate.
Let AACM�P ;DACP�P and CACM�P . If D¼ diagðd11;
d22;…;dPPÞ is a diagonal matrix, then

vecðADCHÞ ¼ ðCn � AÞvecðDÞ
¼ ðCn � AÞ½d11; d22;…; dPP �T : ð5Þ

To exploit the KR subspace, we apply the vectorization
in (5) to (4). As a result, we obtain the kth vector zk:

zk ¼ vecðADkA
Hþσ2

nIMÞ

¼ vec ∑
P

p ¼ 1
σ2
pkðaðϕpÞaHðϕpÞÞ

 !
þvecðσ2

nIÞ

¼ ðAn � AÞqkþσ2
n1

¼ Bqkþσ2
n1 ð6Þ

where

B¼ ½bðϕ1Þ;bðϕ2Þ;…;bðϕPÞ�ACM2�P ; ð7Þ

qk ¼ ½σ2
1k;σ

2
2k;…;σ2

Pk�T ; ð8Þ

1¼ ½eT1; eT2 ;…; eTP �T : ð9Þ

Here, ei is a M � 1 vector with one at the ith position and
zero otherwise. In (6), the vectorized Rk behaves like a
new signal model. That is, qk is the signal vector, σ2

n1
stands for the noise and B is a steering matrix correspond-
ing to a virtual array which has a larger aperture than that
of the array which is not vectorized. Therefore, we can
use this property to handle much more signals than the
number of sensors in the UCA. Note that this property
exists when signals are uncorrelated. For both stationary
and quasi-stationary signals, (6) is preserved if the signals
are uncorrelated. For the quasi-stationary signals, qk varies
differently over each frame. So we can apply conventional
DOA estimation methods to (6). Also, the noise in (6)
behaves like a deterministic vector which could be elimi-
nated easily. In what follows, we refer this signal model to
as the KR-UCA.



Table 1
Normalized truncation error as a function of UCA radius and mode
number He.

rðλÞ He¼11 He¼31 He¼71

0.6 5:7� 10�1 2:8� 10�5 1:2� 10�14

1.6 7:2� 10�1 4:3� 10�1 4:1� 10�8
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3.1. Steering matrix of KR-UCA

According to (6) and using the property of Kronecker
product, the KR-UCA steering vector bðϕÞACM2�1 is

bðϕÞ ¼ vecðaðϕÞaHðϕÞÞ ¼ anðϕÞ � aðϕÞ

¼

e� jζ cos ðϕ� γ1Þ

e� jζ cos ðϕ� γ2Þ

⋮
e� jζ cos ðϕ�γM Þ

2
66664

3
77775 �

ejζ cos ðϕ� γ1Þ

ejζ cos ðϕ� γ2Þ

⋮
ejζ cos ðϕ�γM Þ

2
66664

3
77775

¼▵

b11
⋮

bmn

⋮
bMM

2
6666664

3
7777775
; m;n¼ 1;…;M

¼▵

b1
⋮
bi
⋮

bM2

2
6666664

3
7777775
; i¼ 1;…;M2: ð10Þ

The subscripts m and n in (10) refer to the corresponding
element position in anðϕÞ and aðϕÞ, respectively. The bmn is
obtained through the mth element in anðθÞ multiplying by
the nth element in aðθÞ. The index i in (10) indicates the
element position in bðϕÞ. We can give a general expression
of bmnðϕÞ as
bmnðϕÞ ¼ ejζð cos ðϕ� γmÞ� cos ðϕ� γnÞÞ

¼ ejð2πr=λÞð cos ðϕ�γmÞ� cos ðϕ�γnÞÞ

¼ ejð4πr=λÞ sin ððγn � γmÞ=2Þ sin ðϕ�ðγn þ γmÞ=2Þ

¼ ejzmn sin ðβmnÞ ð11Þ
where zmn ¼ ð4πr=λÞ sin ððγn�γm=2ÞÞ, βmn ¼ϕ�ðγnþγm=2Þ
and ηmn ¼ ðγnþγm=2Þ. Using the Jacobi–Anger expansion in
[21], we have

bmnðϕÞ ¼ ejzmn sin ðβmnÞ ¼ ∑
1

h ¼ �1
JhðzmnÞejhβmn

¼ ∑
1

h ¼ �1
JhðzmnÞe� jhηmnejhϕ ð12Þ

where Jh(z) stands for Bessel function of the first kind of
mode h. The steering vector bðϕÞ could thereby be mod-
eled as

bmn ¼ pT
mndðϕÞ ð13Þ

where pmn and Vandermonde vector dðϕÞ have the follow-
ing expressions:

pmn ¼ ½…; J�2ðzmnÞej2ηmn ; J�1ðzmnÞejηmn ;

J0ðzÞ; J1ðzmnÞe� jηmn ; J2ðzmnÞe� j2ηmn ;…�T ; ð14Þ

dðϕÞ ¼ ½…; e� j2ϕ; e� jϕ;1; ejϕ; ej2ϕ;…�T : ð15Þ
Substituting (13) into (10) yields

bðϕÞ ¼ ½b11; b12;…; bMM �T

¼ ½pT
11dðϕÞ;pT

12dðϕÞ;…;pT
MMdðϕÞ�T

¼ PdðϕÞ ð16Þ
where

P¼ ½p11;p12;…;pMM �T : ð17Þ
Note that P is the characteristic matrix of the KR-UCA,
which depends only on the array configuration.

According to (16), the steering matrix of the KR-UCA
can be written as

B¼ PD: ð18Þ
where

D¼ ½dðϕ1Þ;dðϕ2Þ;…;dðϕPÞ�: ð19Þ
Based on (18), we accurately express the steering matrix B
by using infinite number of modes in dðϕÞ and p.

Thus, we could use finite He modes to approximate B,
and rewrite (12) as

bmn ¼ ∑
ðHe �1Þ=2

h ¼ �ðHe �1Þ=2
JhðzmnÞe� jhηmnejhϕþϵðHeÞ ð20Þ

where the truncated error ϵðHeÞ is a function of mode
number He. As discussed in [22], the magnitude of Bessel
function in (15) decays super-exponentially with increas-
ing He. It means that as He-1, the truncated error
ϵðHeÞ-0. Therefore, a finite number of He modes achieves
high accuracy, enabling us to use a truncated pmn to
approximate the original one in (16), that is,

bmn � ∑
ðHe �1Þ=2

h ¼ �ðHe �1Þ=2
JhðzmnÞe� jhηmnejhϕ: ð21Þ

Note that selection of He has been discussed in [22]. A rule-
of-thumb of He is given as He ¼ 4κR, and R is the largest
distance between a virtual sensor and the center of the
UCA which is given in (2). According to (11), the distance
between an array sensor and the center of the UCA
is 2r sin ððγn�γmÞ=2Þ. So the maximum of the distances
could reach is 2r. Therefore, He of KR-UCA is chosen as

He ¼ 8κr: ð22Þ
We define the normalized truncation error as

ϵerr Heð Þ ¼ ‖PdðϕÞ�bðϕÞ‖F
‖bðϕÞ‖F

: ð23Þ

We set M¼5 and give a numerical example in Table 1.
Table 1 shows that ϵerrðHeÞ decreases as He increases

and increases as r increases. The ϵerrðHeÞ is negligible when
He is sufficiently large, e.g., He¼71. Therefore, the steering
vector of KR-UCA is expressed as a product of character-
istic matrix and a Vandermonde matrix bearing DOA infor-
mation with negligible transformation error. This property
enables us to employ the low-complexity algorithms, such
as root-MUSIC for DOA estimation.

For an M-element KR-UCA, the number of virtual
sensors is M2. However, some of the virtual sensors may
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coincide and this thereby reduces the array aperture. The
relationship between the number of different virtual
sensors r in B and M is given by the following proposition.

Proposition 1. Given M elements of a KR-UCA, the max-
imum number of different virtual sensors is

l¼ M2=2þ1 if M is even

M2�Mþ1 if M is odd:

(
ð24Þ

The proof is given in Appendix A.
Note that the structure of steering matrix of KR-UCA is

similar to that of the fourth-order cumulants and the
different virtual sensors have been discussed in [3,23].

3.2. KR-UCA DOA estimation for narrowband signals

Recall (6), the noise behaves like a deterministic vector.
It only has σ2n at ððMþ1Þiþ1Þth positions, i¼ 0;1;…;M�1,
the others are zeros. Observing that, we delete the
ðMþ1Þiþ1th rows of zk, i¼ 0;1;…;M�1, to eliminate
noise. After deletion, the remaining part is

zk ¼ Bqk ¼ PDqk ð25Þ
where

P ¼ ½p12;p13;…;p21;p23;…;pMðM�1Þ�T : ð26Þ
Thus (25) becomes a noise free signal model after deletion
and it is convenient to apply MUSIC algorithm to it. Note
that the number of virtual sensors of zk only decreases
one. We stack zk, k¼1,…,K, into a matrix to yield

Z ¼ ½z1; z2;…; zK � ¼ PDΞ ð27Þ
where

Ξ ¼ ½q1;q2;…;qK �: ð28Þ
For a finite number of K, the exact covariance matrix RQ

could not be obtained. The corresponding sample covar-
iance matrix is calculated as

R̂Q ¼ 1
K
ZZ

H
: ð29Þ

Notice that the source signal vector qk is different over
time frames due to the property of QSS. As a result, the
source power matrix Ξ has full column rank, indicating
that

rankðZÞ ¼ rankðPDÞ: ð30Þ
By performing the singular value decomposition (SVD) on
R̂Q , we get the estimated noise subspace Ûn. Thus, the KR-
UCA MUSIC function is

SKR�MUSIC ϕ
� �¼ 1

dHðϕÞPH ÛnÛ
H
nPdðϕÞ: ð31Þ

The DOAs can be estimated by performing 1-D peak search
of SKR�MUSICðϕÞ in the range of ϕAð�π;π�. The identifia-
bility condition has to satisfy

dðϕq1
Þadðϕq2

Þ ð32Þ

for ϕq1
aϕq2

and ϕAð�π;π�.
The KR-UCA based DOA estimation can also be achieved

through the Capon method. Applying the Capon method to
the KR-UCA, the Capon based KR-UCA DOA estimator is to
find the P peaks of

SKR�Capon ϕ
� �¼ 1

bðϕÞHR̂ �1
Q bðϕÞ

: ð33Þ

3.3. Extension to wideband signals

For wideband signals with a bandwidth B, we perform
the short-time Fourier transform (STFT) to the received
data in (1), leading to

~Xðf ; tÞ �Aðf Þ ~Sðf ; tÞþ ~Nðf ; tÞ ð34Þ
where Aðf Þ ¼ ½aðf ;ϕ1Þ; aðf ;ϕ2Þ;…; aðf ;ϕPÞ�, aðf ;ϕÞ is the
steering vector of UCA in wideband condition, given as

aðf ;ϕÞ ¼ ½ejζΔf cos ðϕp �γ1Þ; ejζΔf cos ðϕp � γ2Þ;…; ejζΔf cos ðϕp � γM Þ�T :
ð35Þ

Here, the frequency f A �1
2 ;

1
2

� �
stands for the normalized

frequency, Δ¼ d=ðcTsÞ, d is the successive sensor displace-
ment and Ts is the sampling period. The ~Sðf ; tÞACM�N and
~Nðf ; tÞACM�N are defined as the STFTs of SðtÞ and NðtÞ,
respectively, within each frequency bin, ~sðf ; tÞ is a sample
in time domain of a fixed frequency bin. Consequently, the
STFT of x(t) with a window length of NSTFT is defined as

~xðf ; tÞ ¼ ∑
NSTFT �1

u ¼ 0
xðtþuÞe� j2πft : ð36Þ

The STFTs of s(t) and n(t) are defined as the same way as x
(t) in (36). Notice that, for each fixed frequency bin, the
received data can be regarded as narrowband condition.
The KR-UCA scheme is applied to ~xðf ; tÞ of all frequency
bins. Then we combine all wideband KR-UCA spectra for
final estimation. The wideband KR-UCA MUSIC (WB-KR-
MUSIC) spectrum within B¼ ff ¼ i=NSTFTji¼ 0;…;NSTFT�1g
denoted by SWB�KR�MUSICðϕÞ is given as

SWB�KR�MUSIC ϕ
� �¼ 1

∑NSTFT �1
i ¼ 0 ‖Û

H
n ðf iÞPðf iÞdðϕÞ‖2

: ð37Þ

It should be noticed that dðϕÞ is independent of frequency.
For each frequency bin, the characteristic matrix Pðf iÞ
and the noise subspace Ûnðf iÞ should be recalculated.
We calculate R̂Q ðf Þ by (29) for each frequency bin in B.
The wideband KR-UCA Capon (WB-KR-Capon) spectrum,
denoted by SWB�KR�CaponðϕÞ, is

SWB�KR�Capon ϕ
� �¼ 1

∑NSTFT �1
i ¼ 0 bH

f i
ðϕÞR̂ �1

Q ðf iÞbf i ðϕÞ
: ð38Þ

4. Simulation results

We provide simulation results for different settings to
evaluate the performances of the KR-UCA approach for
DOA estimation in this section.

4.1. Narrowband KR-UCA DOA estimation

In this subsection, we use the QSS which obeys Laplacian
distribution corrupted by the white Gaussian noise. The
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frame length is L¼400 and the frame number is K¼30. The
radius of the UCA is r¼ 0:4λ, M¼5 and the signal-to-noise
ration (SNR) is 5 dB. According to (22), we have He420. So it
is appropriate to choose He¼45 as the mode number.

First, we consider both overdetermined and under-
determined DOA estimation conditions to compare the
performances of the estimators in (31) and (33) and
4-MUSIC [10,11]. Figs. 1 and 2 plot ten typical independent
estimated spatial spectra of the KR-MUSIC, KR-Capon and
4-MUSIC methods where the dashed lines denote the true
DOAs. It is seen that even when the number of signals is
larger than the number of sensors, both the KR-UCA
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Fig. 1. Narrowband DOA spectra of KR-MUSIC (a), KR-Capon (b) and
4-MUSIC (c), M¼5, L¼400, K¼30, SNR¼5 dB, DOAs¼f�921; �681;
�351;111;531g.
MUSIC and Capon methods could correctly estimate the
DOAs. Note that both of the MUSIC and Capon techniques
have very sharp spectral peaks and the MUSIC generates
less grating lobes than the Capon method. On the other
hand, 4-MUSIC method performs poorly in the under-
determined condition.
4.2. Wideband KR-UCA DOA estimation

In the wideband DOA situation, we adopt wideband
QSS as the source signal. The frame number is K¼30, the
frame length is L¼400, the sampling frequency is 8 kHz,
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Fig. 2. Narrowband DOA estimation spectra of KR-MUSIC (a), KR-Capon (b)
and 4-MUSIC (c), M¼5, r¼ 0:4λ, L¼400, K¼30, DOAs¼f�1021; �611;
�351;111; 531;881;1211g.
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r¼ 1:0λ, M¼5, SNR¼10 dB, the signal propagation speed
equals 340 m = s, the window length of NSTFT is 32 and the
normalized frequency is ½1:NSTFT�1�=2NSTFT. We use all
normalized frequency bins to estimate the DOAs by (37).
As displayed in Fig. 3, the KR-UCA based wideband MUSIC
and Capon methods could accurately estimate DOAs in
both overdetermined and underdetermined cases. How-
ever, in the underdetermined condition, the 4-MUSIC
method could not correctly estimate the DOAs and
we observe that two peaks have merged into one. The
KR-MUSIC and KR-Capon methods show a better DOA
estimation performance over 4-MUSIC method.
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Fig. 4. Comparison of RMSE angle performance versus SNR of KR-MUSIC,
KR-root-MUSIC, KR-Capon and 4-MUSIC algorithms, M¼5, P¼5, r¼ 0:5λ,
L¼400, K¼30.
4.3. RMSE performance

In this subsection, we compare the root mean squared
errors (RMSEs) and CPU times of KR-UCA Capon, MUSIC,
root-MUSIC and 4-MUSIC methods. The independent trial
number is 500. The RMSE is defined as

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1
P

∑
P

p ¼ 1
ðθ̂p�θpÞ2

( )vuut ð39Þ

where θ̂p and θp denote the estimated and true DOA,
respectively. In all simulations, we set P¼5 and He¼45.
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Fig. 3. Wideband DOA estimation spectra of KR-MUSIC, KR-Capon and
4-MUSIC, M¼5, r¼ 1:0λ, L¼400, K¼30, SNR¼10 dB. (a) DOAs¼ f�831;
�311;221;761g. (b) DOAs¼ f�1371; �931; �411;121;661;1321g.
In Figs. 4–6, we compare KR-UCA Capon, MUSIC, root-
MUSIC and 4-MUSIC methods by plotting the RMSE
performance versus both SNR and radius, CPU time versus
the number of array sensors (on a PC equipped with
a 2.6 GHz processor, 4 GB of RAM and Matlab R2012a
version). We set L¼400 and K¼30. Fig. 4 shows the RMSE
performance of these methods versus SNR with M¼5 and
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Fig. 5. Comparison of CPU time versus the number of array sensors
of KR-MUSIC, KR-root-MUSIC, KR-Capon and 4-MUSIC algorithms, P¼5,
L¼ 400;K ¼ 30, SNR¼5 dB M¼5, with r¼0.4λ, M¼7 with r¼0.6λ.
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Fig. 6. Comparison of RMSE angle performance versus UCA radius of
KR-MUSIC, KR-root-MUSIC, KR-Capon and 4-MUSIC algorithms, M ¼ 5;
P ¼ 5; L¼ 400;K ¼ 30, SNR¼5 dB.
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12;000, SNR¼5 dB.
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r¼ 0:4λ. It can be seen that KR-UCA root-MUSIC method
offers the lowest RMSE. At high SNRs, t.he RMSEs of root-
MUSIC, MUSIC, Capon are almost the same, and 4-MUSIC
method has the worst accuracy for QSSs. Fig. 5 shows
their average CPU times at SNR¼5 dB. We set M¼5 and
r¼ 0:4λ; M¼7 and r¼ 0:6λ. Note that the CPU times of
KR-UCA MUSIC, Capon and 4-MUSIC methods are highly
related with the search grid of θ. In this simulation, we set
the grid size as 0.011. Fig. 6 shows the impact of array
radius with M¼5.

Fig. 7 shows the impact of He on the RMSE performance
of KR-UCA root-MUSIC method. We set the radius of the
UCA as 0.4λ. If we set He¼11, the performance of KR-UCA
MUSIC method degrades. When HeZ15, the performance
of MUSIC method is almost the same. In Fig. 8, we plot the
RMSE performance versus L for the KR-UCA root-MUSIC,
MUSIC and Capon methods where K� L is fixed. We see
that the RMSE performance degrades when L is large.

5. Conclusion

In this paper, we have proposed the KR-UCA scheme for
underdetermined DOA estimation of the QSSs. We have
discussed the number of virtual sensors of the KR-UCA.
The numbers of virtual sensors for odd and even M are
M2�Mþ1 and M2=2þ1, respectively. Therefore, the KR-
UCA is able to achieve underdetermined DOA estimation.
We have investigated the relationship of the RMSE perfor-
mance with the array radius, number of modes and length
of a frame with a fixed number of samples. Moreover, we
have extended the KR-UCA estimation to the wideband
QSS scenarios. Simulations results are in line with the
theoretical analysis.

Appendix A. Proof of Proposition 1

Let us consider a KR-UCA with M physical sensors. The
bðϕÞ denotes the steering vector of KR-UCA as defined in
(10). The number of actually realizable virtual sensors is
determined by the distinct elements in bðϕÞ. The repeated
elements in bðϕÞ satisfy
bi1 ðϕÞ ¼ bi2 ðϕÞ; i1a i2 ðA:1Þ
where bi1 ðϕÞ and bi2 ðϕÞ stand for the i1th and i2th elements
of biðϕÞ, respectively, 1r i1; i2rM2. Recall (12), the coeffi-
cients of the hth modes of bi1 ðϕÞ and bi2 ðϕÞ are calcu-
lated as

1
2π

Z 2π

0
bi1 ϕ
� �

ejhϕ dϕ¼ Jh zi1
� �

e� jhηi1 ; ðA:2Þ

1
2π

Z 2π

0
bi2 ϕ
� �

ejhϕ dϕ¼ Jh zi2
� �

e� jhηi2 : ðA:3Þ

Substituting (A.1) (into A.2) and (A.3), we obtain the
equivalent expression of (A.1) as

Jhðzi1 Þe� jhηi1 ¼ Jhðzi2 Þe� jhηi2 ; i1a i2; ðA:4Þ
where h¼ �1;…;1. Since JhðzÞAR, e� jhðηi1 �ηi2 Þ ¼ Jhðzi2 Þ=
Jhðzi1 Þ is real with modules of 1. According to the value of z,
we have two cases:

	 Case 1: za0. We get two possible situations

Jhðzi1 Þ ¼ Jhðzi2 Þ; ðA:5Þ

Jhðzi1 Þ ¼ � Jhðzi2 Þ: ðA:6Þ
Let us first consider Jhðzi1 Þ ¼ Jhðzi2 Þ; e� jhηi1 ¼ e� jhηi2 , we

have zi1 ¼ zi1 and ηi1 ¼ ηi2 by utilizing the characteristics of
Bessel function and exponential function, respectively.
According to definitions of z and η in (11), we have

sin
γni1 �γmi1

2

� �
¼ sin

γni2
�γmi2

2

� �
γmi1

þγni1
2

¼
γmi2

þγni2
2

:

8>>><
>>>:

ðA:7Þ

If sin ððγni1 �γmi1
Þ=2Þ ¼ sin ððγni2

�γmi2
Þ=2Þ, we obtain

ðγni1
�γmi1

Þ=2¼ ðγni2
�γmi2

Þ=2 or ððγni1 �γmi1
Þ=2Þþ

ððγni2 �γmi2
Þ=2Þ ¼ π. Recall that γm ¼ 2πm=M, the two con-

ditions of (A.7) are expressed as

ni1 �mi1 ¼ ni2 �mi2

ni1 þmi1 ¼ ni2 þmi2

(
ðA:8Þ

or
ni1 �mi1

2
þni2 �mi2

2
¼M

2
ni1 þmi1 ¼ ni2 þmi2 :

8<
: ðA:9Þ

The solution of (A.8) is i1 ¼ i2 and it is contradicted to our
assumption.
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Simplifying (A.9), we obtain

ni1 ¼
M
2

þmi2 ; 1rni1 ; mi2 rM ðA:10aÞ

ni2 ¼
M
2

þmi1 ; 1rni2 ; mi1 rM ðA:10bÞ

8>><
>>:
The solutions of (A.10a) are listed as fni1 ;mi2 g ¼
f1; ðM=2Þþ1g;…; fM=2;Mg and the solutions of (A.10b)
are fni2 ;mi1 g ¼ f1; ðM=2Þþ1g;…; fM=2;Mg. Thus the num-
ber of combinations of these solutions is M=2�M=2¼
M2=4. However considering that i1a i2, ni1 and mi1 must
have ni1 �mi2 aM=2, there are M=2 solutions that do not
satisfy (44). As a result, the number of solutions is

M
2
�M

2
�M

2
¼M2

4
�M

2
: ðA:11Þ

Let us now consider Jhðzi1 Þ ¼ � Jhðzi2 Þ; e� jhηi1 ¼ �e� jhηi2

for odd mode h and Jhðzi1 Þ ¼ Jhðzi2 Þ; e� jhηi1 ¼ e� jhηi2 for even
mode h. For Bessel function, we have Jhð�zÞ ¼ ð�1ÞhJhðzÞ,
thereby the relationships of zi1 ; zi2 and ηi1 ;ηi2 of (A.6) are
zi1 ¼ �zi2 and ηi1 �ηi2 ¼ π, respectively. The (A.6) is sim-
plified as

ni1 �mi1 ¼ �ðni2 �mi2 Þ
ni1 þmi1

2
�ni2 þmi2

2
¼M

2
:

8<
: ðA:12Þ

Reorganizing (A.12), we obtain

mi1 ¼
M
2

þni2 ; 1rni2 ; mi1 rM ðA:13aÞ

ni1 ¼
M
2

þmi2 ; 1rni1 mi2 rM: ðA:13bÞ

8>><
>>:
The solutions of (A.13a) are listed as fni2 ;mi1 g ¼
f1; ðM=2Þþ1g;…; fM=2;Mg and the solutions of (A.13b)
are listed as fmi2 ;ni1 g ¼ f1;M=2þ1g;…; fM=2;Mg. The num-
ber of combinations of solutions in (A.13a) and (A.13b)
is M=2�M=2¼M2=4. However solutions that satisfy
ni1 ¼mi1 and ni2 ¼mi2 in (A.12) lead to z¼0. It is contra-
dicted to our assumption. The number of these conditions
is M=2. As a result, the number of same elements is

M
2
�M

2
�M

2
¼M2

4
�M

2
: ðA:14Þ

	 Case 2: z¼0. In this case, we have m¼n, thus the
number of same elements is M�1.

Note that the existence of the above-mentioned cases
depends on the parity of M. It is clear to see that if M is
even, the total number of virtual sensors is

M2� M2

4
�M

2

 !
� M2

4
�M

2

 !
� M�1ð Þ ¼M2

2
þ1: ðA:15Þ

If M is odd, then Case 1 does not exist because M=2 is
no longer an integer in (A.9) and (A.12). Thus, the total
number of virtual sensors is

M2�ðM�1Þ ¼M2�Mþ1: ðA:16Þ
This completes the proof of Proposition 1.
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